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Second quantization and atomic spontaneous emission inside one-dimensional photonic crystals
via a quasinormal-modes approach
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An extension of the second quantization scheme based on the quasinormal-modes theory to one-dimensional
photonic band gapPBG) structures is discussed. Such structures, treated as double open optical cavities, are
studied as part of a compound closed system including the electromagnetic radiative external bath. The
electromagnetic field inside the photonic crystal is successfully represented by a new class of modes called
quasinormal modes. Starting from this representation we introduce the Feynman’s propagator to calculate the
decay rate of a dipole inside a PBG structure, related to the density of modes, in the presence of the vacuum
fluctuations outside the one-dimensional cavity.

DOI: 10.1103/PhysRevE.70.056614 PACS nunerd2.70.Qs, 42.50.Ct, 42.50.Nn, 11.10.Nx

[. INTRODUCTION cussed if11,12, but the starting points of this work are very
different. Some of these differencésetween pseudomodes
Photonic crystals can be viewed as particular optical cavif11] and the quasinormal modewill be discussed later in
ties having the properties of presenting allowed and forbidthis work. It has already been made an essential first step
den bands for the electromagnetic radiation traveling insidetowards the application of QNMs to cavity quantum electro-
at optical frequencies. For these motivations these structurdynamics phenomen@]. The second quantization of a sca-
are also named photonic band g&BG) [1]. In these struc- lar field in an open cavity is formulated, from first principles,
tures, dispersive properties are usually evaluated assumirig terms of the QNMs, which are the eigensolutions of the
infinite periodic conditions[2]. The finite dimensions of evolution equation, decaying exponentially in time as energy
PBGs conceptually modify the calculation and the nature ofeaks to outsidg7].
the dispersive properties: this is mainly due to the existence The behavior of systems coupled to dissipative reservoirs
of an energy flow into and out of the crystal. A phenomeno-epresents a central theme of quantum optics. Technological
logical approach to the dispersive properties of 1D PBG hasdlevelopments, in the form of high quality and high cavity
been presented in Ref3]. The application of the effective- finesse, led to the extension of such studies also into another
medium approach is discussed, and the analogy with direction, which has come to be known as cavity QED.
simple Fabry-Pérot structure is developed by Sgpel. in Spontaneous and stimulated emissions are fundamental pro-
Ref. [4]. cesses resulting from the interaction between radiation and
The theory of quasinormal mod€®NM) [5] was been matter. They depend not only on the properties of the excited
introduced by Leunget al, in order to describe the electro- atomic system but also on the nature of the environment to
magnetic field in one side open optical cavities. In these opewhich the system is optically coupled. Spontaneous emission
systems, in fact, because of the leakage, the “modes” of the a one-dimensional Fabry-Pérot-type optical cavity is ana-
cavity are characterized by complex eigenfrequencies and fdyzed quantum mechanically in RgfL3]; this link with the
this reason they are referred to as quasinormal m@des density of modes has been put into evidence in Ref], in
Recently this classical theory it has been extended to opticgdarticular the theory of spontaneous emission from an ini-
cavities open from both sides and in particular to 1D PBGtially excited two-level atom in a one-dimensional optical
cavities[6]. The purpose of this paper consists in the exten-cavity with output coupling from both sides is developed in
sion of the second quantization scheme QNM based, firdRef. [15].
introduced by Leund?7,8], to photonic band gap structures It is well known that one of the more interesting features
considered as double open optical cavities and this is a natef PBG structures is their ability to alter the spontaneous
ral continuation of the classical worl6]. We find expres- emission of probe atoms embedded in the periodic lattice;
sions of field correlator functions, as a formal application ofthis is due to the electromagnetic field modification induced
the just introduced formalism, in order to investigate theby the structurg¢16]. Large enhancement and complete inhi-
problem of spontaneous emission of an atom inside the 1Dbition of atomic spontaneous emission can be obtained. It
PBG structure. was in 1946 that Purce[l17] first predicted that nontrivial
In the free space, quantization of a closed cavity can bé&oundary conditions on electromagnetic field in the vicinity
performed by using normal mod¢g] where a plane wave- of an excited atom could alter its decay rate. In the wake of
based operator expansion of the field is used. An open cavityheoretical promulgation of PBG structures, concern has
viewed as a dissipative system, cannot be quantized unlessrned to the question of the behaviour of atomic decay rate
[10] one consider the bath being part of the total universein such structuregl8]. In particular, it was predicted that the
Different methods of description of these systems are disdecay rate could be suppressed for atoms located inside PBG
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when their resonant emission frequency was in the photonic Ad(x,t) = \"PTﬁt(ﬁ(KU for x< 0,
band gap. In this frequency range, the electromagnetic den-
sity of modegDOM) is very small. Resonance enhancement N
of decay rate was expected at the photonic band edges where AAXD == \pockd(xD) for x> d. ©)
the DOM was anomalously large. In fact, the DOM and theDue to the above condition@), the electromagnetic spec-
electromagnetic modal fields are altered at the position of theum becomes discrete; heuristically, the eigenfrequencies
atom. Referenc¢l9] considers a more sophisticated modelare spaced byAw= wc/d. Computationally and conceptu-
of atomic spontaneous emission and classical radiation in ally, this discreteness is much more convenient than dealing
finite 1D-PBG. The full three-dimensionaBD) or two-  with the infinite space of the universe, for which the spec-
dimensional (2D) problem is reduced to a finite one- trum would be continuous imw. The consequence is that
dimensional1D) model, which is analytically solved by us- inside the finite space of the cavity, energy is no longer con-
ing algebraic transfer matrix techniqug0]. In Ref. [21], served, and mathematically the time evolution operator is no
atomic spontaneous emission, in one-dimensional photonionger hermitian.
band-gap structures, is numerically investigated. Both the However the general function satisfying Eq$) and (3)
temporal and spatial dynamics of the electromagnetic fieldind can be written ag5]
and the atomic polarization are treated by a propagation _
method that allows up to easily and realistically model ma- @(X,1) = X ann(X,t) = X anfn(x)e ', (4)
terial boundary conditions for finite structures. n n

Therefore although a full analysis of the spontaneousyherea, are suitable coefficients,(x) are the quasinormal
emission process should be performed in a 3D geometry, Wode functions, ando, are the correspondent frequencies

would like to put into evidence how the QNM approach, \ith Im w,<0. The coupldf,(X),w,] has to satisfy the fol-
limited to 1D open( finite) structure, is consistent with re- lowing equation8,5:

sults already known in literaturd9,2Q, thank to the possi-

bility of the introduction of definition of density of modes. d_2 2 f(0=0
The present paper is organised as follows. In Sec. Il, the dx@ *opp(x) | 1(X) = 0.

QNM approach is introduced and briefly compared with the . o

theory of damped harmonic oscillatgi2]. In Sec. Ill, the N QNM's space, the norm of the quasinormal function is a

essential extension of the second quantization is provided fd@mplex number and it is given by the following expression

one dimensional double open cavities, by using a LagrangiaHS]:

approach[23] and introducing two driving functions that d _

take into consideration the effect of the external space to the  (f,|f,) = anf p()F2(x)dx+iVp[f3(0) + f2(d)], (6)

cavity. In Sec. IV, field correlation functions and the Feyn- 0

man propagator is introduce@4,23, in order to calculate where the main differences with the ordinary definition of

the decay rate of an atom inside an open cavity, in presengg .. g1 is the presence d(x) rather thanf.(x2 and the
of the vacuum fluctuations outside the cavity. In Secs. V anq [] b nl ) My

e « YA g2
S . / Ipofa(d).
V1, an application to a quarter-wave symmetric 10-PBG is WcIJt ?: ﬁ:':g/reesﬁl;rfatlgeosbtseerrr\r)g ;ﬁgzr}gor)eincil gﬁ? TédéNM func-
reported and the results are discussed. 9 9

tion ¢, (x,t), (4) i.e., [8,5],
@a(x,t) = fo(x)e7nt, (7)

three appropriate real constamts y and k exist in such a

The concept of quasinormal modes has been developgly that ¢, (x,t) satisfies the following damped harmonic
for open systems wherein the electromagnetic field Sat'Sf'eésciIIator equatior22]

the wave equatiofi8,5]:

©)

II. QUASINORMAL MODES APPROACH

Mdy@n + Yohpn + Ko = 0. (8

&
{ﬁ - P(X)Rz:| $(x,1) =0, (1) This point can be easily understood substituting &ginto
Eq. (8), obtaining
where p(x)=[n(x)/c]?, with n(x) the refractive index of the
material andc the vacuum light speed.
The evolution equatioiil) is defined in a finite interval
C=[0,d], representing the geometry of the finite open cavity. 2Mwnrwy + ywpr= 0, 9

Attention is restricted to systems.having a discontinuity inynich is an always solvable system, where the complex fre-
x=0 andx=d (say stepg and no tail beyon&=0 andx=d,  quencyw, has been decomposed in its real and imaginary

m(wﬁR— a)ﬁ,) - yo, — k=0,

i.e. [6], parts w,= wprt+io, (With w,r=Rew, and w,=Im w,). In
p(X) = po for x< 0,x > d, ) conclusion, the temporal behavior expressed by [&y.is
strictly similar to the one coming from the damped harmonic
wherep,=[no/cl? andny is the outside refractive index.  oscillator theory[22]. For the QNM theory, however, the

Quasinormal function space is defined through @9.in  origin of damping is not the presence of a first order time
association with the following outgoing wave conditions  derivative for the field; but the escape of energy from the
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two sides of the structure, due to the outgoing wave condi- E( L ) _ ) ( L ) 15
tions (3). dt\a(ap)) o \dop))’
Ill. SECOND QUANTIZATION using Eq.(14), we have
Let us now consider an open cavity of lengtHilled with L
a medium having a refractive index space dependédt in b = p(X) (X, 1), (16)
the presence of two e.m. input fields, opgs(x,t) coming t
from the left side, the otheg,y,(X,t) from the right side. oL
If the refractive index satisfies conditioii®) (see[8,6]), — =0, (17)
the QNMs form a complete basis only inside the cavity, 2
and the e.m. field can be calculated as a superposition gf,
QNMs [7]
dL
B(x,t) = > a,()fN(x) for 0= x=<d, (10) ‘9x(9(ax¢) = = dyp(X,1). (18)
n

where the apei reminds than‘?(x):fn(x)\/an/<fn|fn) are
the normalized QNM functions. We can see that EL)
is an extensiorigeneralizatiop of previous Eq.(4). In fact,
the superposition coefficientg(t) satisfy the dynamic equa-
tion [7]

=[N (O)bieg(t) + () byign(D)],
@n\Po

an(t) +iwnan(t) =

(11

where two driving forcedi(t) andbygy(t) are linked to the
incoming (real) fields ¢ier(X,t) and ¢yign(x,t) coming re-
spectively from the left and right sid&’]. The relation be-
tween these quantities are given by

biert(t) = = 2Vpg dyPler(X, V) |x=0,

Bright(t) = 2 po Ak Pright(X, 1) |x=q- (12

So it is clear that Eq(14) expresses the evolution equation
(1) and corresponds to the Lagrangian density. The conju-
gated function, with respect to the Lagrangian dengi#),

can be calculated as an immediate consequence of the defi-
nition [23]

L
)
So, from Eq.(16), the conjugated function op(x,t) is the
product ofp(x) and the time derivative,¢(x,t). The Hamil-

ton density function associated to the evolution equation
is [23]

B(x,t) = = p(X) G p(X,1). (19

[ap(x.)]?
S

H=p(X)[dp(x,) P~ L= p(X)

[axqb(zx,t)]2 s
(20)

As discussed by Het al. [7], the cavity energy deduced by
Eq.(20), in the conservative limit, does not depend on time

Of course the boundary conditions satisfied by the two in-The introduction of the conjugated function in E49) en-

coming fieldséen(X,t) and ¢ign(t) have to be given in the
following form:

dedren(XD) = = Vpoddrer(x,t) for x=<0,

ax¢right(xat) = V’PO&t(ﬁright(Xrt) for x=d. (13)

globally called incoming wave conditions, with respect to
Eq. (3). In this new scenario it is easy to verify that expres-

sion(4) is linked to a particular case of EL1), in which we

have bye(t) =byign(t) =0. From a simple inspection of Eq.

(11) we see that all the QNM coefficiengg(t) are driven by
the two driving forceseq(t) and byign(t); so, even if each
QNM coefficient has the property Im,) <0, incoming

ables us to use this concept in the definition of the inner
product as will be clear in what follows.

Our purpose is to develop a formalism whereby field
gquantizatio 9] can be implemented in terms of QNMs. This
allows us to interpret the expansion coefficienid) appear-
ing in Eq.(10), as generalized annihilation and creation op-
erators for the discrete QNMs.

Coefficientsa,(t) are the expansion terms on the QNM
base[8]:

_ (I g(xD)
(IR (0)
where the inner product is given by the following expression

aq(t) (21)

waves conditiong12) ensure the presence of quasistationary[8]:

regime solutions, as well as described[#). The coupling

d
between the QNM inside the cavity and the driving forces (d(x,t)|¥(x,t)) = if [(D(x,t)‘if(x,t) +§>(x,t)‘l'(x,t)]dx
0

bier(t) andbigy(t) is determined by the surface values of the

functionsf(0) and f(d).

It is immediate to show that the Lagrangian density for

the evolution equatiol) is [23]
L ={p()[ap(x,)]* = [ap(x,H) ]P}2.

In fact, if we write down the equation of Lagrange

(14)

+®0,Hw(0,1) +P(d,t)¥(dt). (22

The tilded functionsV and® are respectively conjugated to
¥ and®, in view of the Lagrangiaril4).

Coefficientsa,(t), functionsf,’}'(x) and frequencies,, sat-
isfy symmetry propertie§5]:
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—_ w d
@-n= = 0n 29 [Bn,20) = [B 2= S8
and[5] 2|wn| 0
a (b= a;(t), ft‘n(x) - [fE(X)] * (24) or equivalently

So we can rewrite Eq.10) in the following way:

p([fRX)Pdx  (32)

_ Vpo R wy]
4|wn|2 Im[ ]

B(xt) = 2 [a,(DFH00 +ay) (F9) * 1. (25 |n the pape(7] it is possible to find a simple demonstration
n=0 in which relation (32), in the conservative and stationary

The second quantization proceeds by first promotitg,t)  limit, is [&,,41]=1/2w,. This expression is similar to the one
to field operatof9]. To this end, in analogy with the standard concerning the well known annihilatiof€,) and creation
quantum expansion of the free field, where we find creatior(éﬁ)_operators, if we assume for the QN operatds
and annihilation operator multiplied by plane wave terms=\2w,&, anda'=\2w.&". This result can be intuitively un-
into a relation similar to Eq(25) (in which functionsfr’\,I are  derstood observing that, when we consider the conservative
substituted by, functionsa,(t) can be regarded as opera- limit, i.e., when we consider the limit of closed cavitthe

(8,8 = [ENO+[RNDP]. (33

tors. field tends to the nodal conditions at the two ends of the
We adopt the following equal time canonical quantizationstructurey, in Eq. (33) we have Iniw,]— 0: this imaginary
rules for the field&&(x,t) operator[9] part goes to zero with the same velocity djl’,}'(0)|2
. +|fN(d)|?, since the damping is related to escape of energy
[gb(x,t),?b(x’,t)] =is(x—x'). (26) from the two ends of the structures.

o ) . We would like to remark that QNM approach is very dif-
This field may be regarded as operator for the entire unifgrent from the pseudomodes approach introduced by Dalton
verse, which is a conservative system. The same projectiog; 5|, [11]. In fact, the pseudomodes are obtained by the Fano
formula(21), as in the classical case, now defirigét) and  ransformation of the normal modd42], so they use an
al(t) as QNM-space operators, obeying the equation of Moprdinary metric and the canonical second quantization is
tion (11). We can express the field operaipfx,t) in terms  adopted; QNM do not, they use a specific definition for the
of the operators,(t) and é:ﬂ(t) as norm (metric) and so a noncanonical second quantization is

. adopted(see. Refs[5,8,9).
- N - Modification of the commutation relations with respect to
$(x.D) = %[an(t)fﬁ(x) * a:(t)(fﬁ(x)) gt (27 the canonical ones, gives rise to a modification of th% emis-
" sion properties of a dipole embedded in a 1D microcavity, as
If we calculate the generic commutator between two QNMsclearly described in the work of Uedgt al. [26]. We ob-
we have serve, from EQ(32), that the commutation rules of QNM
uasimodes exhibit a modification with respect to the ca-
_ [N, 06 0), (P (), (X, 1) gonical one, and therefore we have to expecfan influence on

8] = (N, ENOOYEN, (), TR (%)) 28) the spontaneous emission process due to the cavity geometry.
" " In what follows we analyze the spontaneous emission pro-
and by using relatiofi26) we have cess in 1D open cavity. Although a full analysis of the spon-
q taneous emission process should be performed in a 3D ge-
A s %" ®n NP ometry, we would like to put into evidence how this
Ay | = x)fo(x)f ,(x)dx. 29 ! - e . .
(8] dwnwpy fo PO ()T () 29 approach, limited to 1D opeffinite) structure, is consistent

) N ) with results already known in literatuf&9,2q, thanks to the
Quasinormal functions(x) are orthogonal with respect to possibility of the introduction of definition of density of

the norm(22), so we can writg6] modes; we remember that the density of modes is propor-
d tional to the spontaneous emission rate of an embedded
i(w,+ wn/)f p(x)f,’}'(x)f,':',(x)dx probe atom, by Fermi’s golden rules.
0
— V’E[f,ﬁl(o)f:,(o) + fr’:‘(d)f:(d)], (30) IV. ATOMIC SPONTANEOUS EMISSION

Since the two classical incoming field$q(x,t) and
diignt(X, 1) introduced in the previous section are real func-
tions, the corresponding field operators are Hermitian, hence

that is valid forn’ #n. Using the relation30), commutator
(29) becomes

o W — \J%[f,’}‘(O)fE,(O) + fr’}‘(d)fw,(d)] the two driving forces in the quantum domain will become
[an,a,]= - Hermitian operators too. Let us quantize these two driving
4wnon (o + @) forces, viewing the two fields in the quantum domain as two

that is valid only ifn” # n. In order to understand better these Uncorrelated fields having onlyacuum fluctuationg9].
canonical quantization rules, we can put in E2f) n’=—n. In the Fourier transformed domain, Hermiticity does not

For the relationg23) and(24) we have hold; so the transformed driving forces operatfqgsﬁ(w) and
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bygni(®) are not hermitian in general. These two fields have &/arious processes involving particle interactions. After all,
~ _ between interactions, the particles just propagate in space-

zero mean valuéb(w))=0 but a nonzero root-mean-square time

deviation[7]: Taking the Fourier transform of the definitid86) leads

to a direct relation in terms of the cavity correlat@5), as

(b (w)b(w)) = £(w) = hal2, (39 from [27],
where?: is the Planck constant. ~ (" do’ 1 1
The phenomenon afpontaneous emissiaf an atom can G (XX, @) =~ lim o\ PN
e=0J)_ 2T\ tw—le w-—le

be considered as amission induced by the vacuum fluctua-
tions In fact, even in absence of incident photons, an atom ><|~:(x X, o) (37)
inside the open cavity sees the vacuum fluctuations related to R

the quantum mechanical nature of the electromagnetic fieldypstitution of the right-hand side of E5) into Eq. (37)
outside the cavity. Under the effect of these fluctuations, itje|ds Feynman propagator as

can emit a photon and fall back into a lower energy stéite

energy of the global system being conserved during this pro- 7 fN(O)fN (0) + fN(d)fN (d)
~ n ’ n ’
cess. Gr(x, X, w)=—iz > - :
In order to study the spontaneous decay rate of an atom 20 4pownwn (wn + @)
inside the cavity, with the QNM formalism we have to find
the correlation field functions in terms of quasinormal func- <! @ “n_ (- @' NN (x
tions[9,7]. In what follows, we use the same procedure that (@) wn— @ - @) Wy + n (T 0,

Leunget al. have used in the contest of optical cavities open
from one side only{7]. The results that we find in this sec-
tion are valid for dou_ble open optical cavities and, in particu_-Where f(w) is the unit step function.
lar, in the next section, we apply the treatment to photonic
band gap structures.

The formalism derived in the previous section for expand

ing the quantum electromagnetic fie&ix,w) in terms of

creation and annihilation operatoé§(w) and &,(w) can be tion if the field 4(x, w) and the conjugate momentufix, »)
applied to the calculation of equilibrium correlation func- &€ considered together. There are of course many ways to

tions, yielding discrete representations for the cavity fielginderstand why the Feynman propagator is nondiagonal; one
of the most direct is via the equation of moti¢hl) which

(38)

In paper[7], it has been remarked that the nondiagonal
representation of Feynman propagator in terms of QNMs has
'some nice properties, and it is in fact the unique representa-

correlator:
shows that all the QNM coefficients,(w) are driven by the
E,X,w) = BT (% 0) BX', @) two driving forcesbq(w) and byign(w), so that in general
o ' N ' N Ny o different coefficients will have phase coherence and hence a
— fa(Qf (0) + fr(d)f, () nonzero correlation. However, the cavity correlatg$) and
=clo fr (0 fy (). the Feynman propagatai38) become diagonal, as they

’ 4 ’ - ’ + . . A .
a 4Pownen (@0~ @) (@ + ) should, in the conservative limit whdm[o,]| <R w,]. In

(35 agreement with the creation-annihilation interpretation of the

operatorsa,(w) andég(w), the conservative limit is such that
The above formulg35) leads to a clear physical interpreta-

tion of pole structure in complex plane € C: the QNM T
. . 2 at ~
poles w,,, with Im[w,]<0, correspond to the cavity reso- (an(w)ay(w)) = ;5(w_wn)5n,n’- (39
nances excited by the vacuum fluctuations.
Another important correlation function is the Feynman Itis now profitable to consider the very simple example of

propagator25], an atom inside the open caviggt a pointx) which is stimu-
lated by the vacuum fluctuations outside the cayay fre-
GF(x,t,X',t') = = i{T{d(x,H) B(X, 1)}, (36)  guencyw); in the dipole approximation and for weak atom-

pump coupling, the decay rate is related to the equilibrium

in which T denotes the time-ordered thermal propagg2dt. ~ equal-space propagatf#5]
Let us now see how the form given in E(6) can be _ 5

interpreted[27]. First, if t<t’, the matrix element describes D(x,w) = GT(x,X,w). (40
the amplitude of a particle being created at a timehich
propagates in space-time and is annihilated at a laterttime The conservative limif7] is the only case in which a single
Similarly, if t>t’, Eq.(36) describes the amplitude of a par- QNM can dominate(narrow resonancem w,| <|Rewy|)
ticle being created at a tim, which propagates in space- and the vacuum fluctuations can be coupled to just one QNM
time and is annihilated at a later tinteThis, in a sense, is (ow=Rdw,]); so, if the single-QNM conditiom’ =-n is in-
the physical meaning of the propagator, which also showserted into Eq(38), the dipole at the point is coupled to the
why it should be important to calculate the amplitudes ofnth QNM and the equal-space propagator becomes
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= N/ |2 wn
D,(X,w) = 2|f (X)] |: w) + 0(— w) = |,
\po| n| n W~ W,
(41)

where the normalization integralsg, are defined and calcu-
lated agEq. (30)]

Vpy/d

N N
Zim o] INOP+ TP

1 ‘ N 2
an = a p(X)|fn(X)| dx=
0

(42)

Only the sum of the two terms in E@41l) preserves the
fundamental relatiorf9] DR(x, w)=[DA(X,w)]* for real o,

where DR(x, w)[DA(X, )] is the retardedadvanceyl propa-
gator obtained fronD(X, w) by continuation from positive
(negative frequencies. MoreoveD(x, ») satisfies term by

term the equally fundamental inequality Uﬁ(x,w)jso on
the real axig9]. A violation of this inequality could lead to a

retardered atom propagator that has poles in the upper half

plane ofw e C, signifying an unphysical instability.
The decay rate in the open cavifif(x, w), in units of the
one in the universg9], is physically related to the equal-

space propagatd5n(x,w), mathematically by the following
definition [25]

2w\

5% w) = - Tpo Im[D,,(x, )], (43)

for real positive frequencies > 0.

Inserting Eq.(41) into Eq. (43), under the hypothesie
=Rdw,]>|Im[w,]|, the decay rates,(x,w) can be ex-
pressed as

1 fNXP o (w
s = LI o)

(44)
whereo,(w) is the global density of probabilitypOM) for
the nth QNM [13-15

(@) =K d a?Im w,)|
on(w) =K,—
n " (w-Rew,)?+Im? v,

: (45)

Equations(44) and (45) confirm the validity of the QNM

approach; in fact, the Fermi’s golden law has been obtaine

if a dipole inside the open cavitgx-point) is stimulated by
the vacuum fluctuations outside the cavity-frequency
which are coupled just to theth QNM, then the decay rate

Sn(X, w) is proportional, in particular, to the QNM intensity

|fN]2 in the pointx, and also to the DOM, at the frequency
w.
Under the hypothesis of narrow resonancis w,|

<|Rew,| the normalization integrals can be approximated to

a,=1/d, and the normalization constaridg can be obtained
by the following condition

PHYSICAL REVIEW E 70, 056614(2004)

o

»

Nh+h d x

h+l

k(htl)  k(htl+h

FIG. 1. Refractive index(x) for a symmetric 1D-PBG withN
periods plus one layer; every period is composed by two layers,
having respectively lengthsand| and refractive indicesy, andn;.

The added layer has parametarandn;,.

Re wp+Awp, 1
f op(w)dw =—.

Re wp-Awp d

(46)

In fact, in the cavity of lengthl, the dipole is coupled just to
the nth QNM, with resonance Re,=0 and around 2w,
<Rew,, where Aw,=|Im w,| is such thato,(Re w,tAw,)
=o(Rew,)/2.

V. 1D-PHOTONIC CRYSTALS

With reference to Fig. 1, let us now consider a symmetric
1D-PBG structure which consists & periods plus one
layer; every period is composed of two layers respectively
with lengthsh and| and with refractive indices;, and ny,
while the added layer is with parametérandn;,. The sym-
metric 1D-PBG structure consists oN21 layers with a
total lengthd=N(h+I)+h. If the two layers external to the
symmetric 1D-PBG structure are considered, the 1D-sgace
can be divided into R+3 layers; they ard =Xy, %1, K
=0,1,...,N+1,2N+2, with xg=-%, x;=0, X,n:2=d, and
Xonea= +0. The refractive index(x) takes a constant value
n. in every layerL,, k=0,1,... , 2N+1,2N+2, i.e.,

no, for X e Lo, L2N+2!
n(x)=\ny, forxely, k=1,3,...
forx e L, k=2,4, ...,

JAN-1,2N+1,

n, N.

(47)

As recently described 6], for symmetric 1D-PBG struc-
tures, the expression of the complex norm of a generic QNM
functions(f,|f,) can be obtained in a very simple manner as
a derivation process by using an auxiliary function method,
instead of an integratiofas intuitively suggested by the ex-
pression6)]. Since in these hypothesis the calculation of the
Jrorm is rather simple, if we define

f

o= .”|JL”> , (48)
2iNpo

the normalized intensity of theith QNM, i.e., |fN(X)[?
=|f,(¥)[4 200/ (fo| f)], can be reexpressed a#N(x)[?
=(1/\po)|wn! /| f2(X)|2, and the decay ratel4) and(45), in
units of the one in the univers{é], becomes

On w)

5n(x7w): | n( )|2

KnV PO
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K [Im wy| As an example let us consider a symmetric quarter wave
() = 2 - (49 1D-PBG, with reference wavelengi.s=1 um, number of
d(w Rew,)?+Im? w,
periodsN=5, refractive indices,=2 andn,=1.5. There are
As proved in[6], for a quarter wave symmetric 1D-PBG 2N+1 QNMs in the[0,2w,¢] range. In the hypothesis of
with N periods andw. as reference frequency, there are single resonance, a dipole inside the structure can be coupled
2N+1 families of QNMs, i.e.F"™, ne[0,2N]; the FN™  to just one of these QNMs, which ate)=|n,0) with n
family of QNMs consists of infinite QNM frequenmes i.e., €[0,2N].

wnm MeZ={0,+1,£2,..}, which have the same imagi- In Figs. 2, the QNM intensitiet,=|f, ¢(X)|? [6], in units
nary part, i.e., Imw, ,=Im w, o, me Z, and are lined with a  of the maximum value,,,,inside the 1D-PBG, are plotted as
step A=2wyey, i.€., R€w, ) =Re(wyo)+mA, meZ. It fol-  a function of the dimensionless spaxkd, whered is the

lows that, if the complex plane is divided into some rangeslength of the structure, faf@) the QNM |3), having the fre-
i.e., Sy={mA <Rew<(m+1)A}, me Z, each of the QNM quency closed to the first transmission peak before the first
family FS"M drops only one QNM frequency over the range band edge,(b) the QNM |4), corresponding to the low-
Sw i-e., wpm=(Rew, o+mA,Im w,o); there are RI+1 QNM  frequency band edgéc) the QNM |5), corresponding to the
frequencies over the rand®, and they can be referred as high-frequency band edge, aiid) the QNM [6), closed to
Wnm=wno+MA, ne[0,2N]. The QNM frequencies are not the first transmission peak after the high-frequency band
uniformly distributed in the complex plane, but they arrangeedge. When we speak about frequency, we usually refer to
themselves in order to form permitted and forbidden bandsthe real part of the frequenay,, if not otherwise specified.

in agreement with the known characteristics of these strucThe QNMs corresponding to the two band edges present the
tures[8]. Moreover, the more the 1D-PBG presents a largdargest intensities in the 1D-PBG. The QNM intendighas
number of periodgL >\, with an high refractive index n+1 minima. In the center of the structuxe-d/2, the QNM
step(n,—n,>ng), the more theth QNM frequencyw,, o de- intensities have a maximum for odd valuesnodind are nuI_I
scribes thenth transmission peak in the sense that&g) for even values ofi and, on the two surfaces of the cavity,
comes near to the resonance frequency ofrietransmis-  X=0 andx=d, all the graphs show the same value for the
sion peak,|/Im(w,0)| approximates the FWHM of theth (relative) intensity. Finally,ly is almost null in the range in
transmission peak, ard,(x)|> approximates the field inten- Which there is a maximum dfy-;, andly-; is small in the

itv distribution inside the 1D-PBG struct t fit trans-  "@nge in which there is the second relative maximunhyof
fr:i)s/si?nrzagalf{)g]mg € the structure a rans In Fig. 3, the DOM according to the QNM theofg] is

The norm(48) of the QNM |n,m) with frequencyawn,m plott(_ed as a fgnction of the dime.nsionles.s frequemtw,q
= wy o+ MA becomesy, = (f, | fr)/2i \po, such that and is normalized to a bulk velocity,yy, which corresponds
n.0 e mETnm o to scaling the DOM by that of an infinite homogeneous ma-
terial with an effective index that is the harmonic meamf
Yom= 7n,0wn’m V”O(wno.y mA). (500 andn, [20]. The photonic band gap is in a regi@y w
®n,0 ®n,0 =[0.84,1.16; the suppression of the DOM in the gap is
o . o clear, as the enhancement of the DOM at the band-edge reso-
The nth QNM family is such that they, ,, norm |s.per|_o.d|c NaNCeswiy/ wrer=0.84 andwygy/ wier=1.16, where the spec-
with a stepl'n=y,o(A/wno). In Ref. [6] all the simplified 4] transmission is one; there are other less-pronounced

expressions of relationgl8) and (50) in terms of two par-  peaks in the DOM on the pass-band at the frequencies that
ticular coefficients of an auxiliary functions can be found. correspond to other transmission resonarie€

So, for the symmetric 1D-PB@47) with quarter wave In Figs. 4, decay rateR, =4, o(X, ), (51) in units of the
stacksnph=njl =\e1/ 4, the decay rated9) of a dipole in the  maximum valueR,,, inside the 1D-PBG, are plotted as a
pointx, coupled to the QNMn, m) becomes function of the dimensionless spak&d and the dimension-

less frequencyw/ wy; for (a) Rs, the coupling dipole-QNM
5. (X,0) = 1| @no | X2 Un,m(w_) |3) having the frequency closed to the first transmission peak
e 2 Yool "™ Kymipo' before the low frequency band edge) |4), i.e., the coupling

dipole-QNM corresponding to the low-frequency band edge,

(¢) Rs, the coupling dipole-QNM5) corresponding to the
Knm [Im wn | (51) high-frequency band edge, and) R, the coupling dipole-
7d (w0 - Rew,o— mA)? + Im? w,, o QNM |6) corresponding to the next transmission peak after

the high frequency band edge. The decay r&®gsind Rs,
Since in the 1D-PBG of lengtt, the dipole is coupled with corresponding to the two band edges, stand out resp&t to
the QNM |n,m), at a frequency resonance Rg,=Rew,o  andRg of the next transmission peaks, because, in the two
+mA=0, if we consider the narrow banflw,=2/Im o, oJ  band-edge resonances, the DOM is enhariEegl 3) and the
<Rew,n We can evaluate the normalization Constﬁfﬁn QNMs present the most large intensities inside the structure

O'n,m(w) =

in Eq. (51) by using the following condition: (Fig. 2). Moreover, the decay ratg, is centered around the
QNM frequencyw, and, like the QNM intensityy, hasn
Re wn gtmA+Im wp gf 1 +1 minima along thex direction (Fig. 2). We note that the
f opm(w)dow=—. (52 QNM approach uses a realistic model for the 1D-PBG, as a
Re wy g+mA-{Im wp g d finite cavity with discontinuities in the refractive index, so
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FIG. 2. QNM wave function intensitiels,=|f, o(x)|2 [5], in units of the maximum intensitly,,, inside the 1D-PBG structure, plotted as
a function of the dimensionless spadeal, whered is the length of the cavity. The 1D-PBG structure is symmetric, with quarter wave stacks:
reference wavelength, ;=1 um, number of perioddN=5, refractive indices),=2 andn=1.5. In the[0, 2w,.] range there are N+1
QNMs, as well as the transmission peg8F i.e.,|n)=|n,0) with ne [0, 2N]. (a) Intensity for QNM|3), having the real part of the frequency
centered inw/ w,;=0.6891[see Fig. 2e)]; (b) intensity for QNM|4), corresponding to the low-frequency band edgev,;=0.8397[see
Fig. 2e)]; (c) intensity for QNM|5), corresponding to the high-frequency band edde,.;=1.160[see Fig. 2e)]; (d) intensity for QNM
|6), having the real part of the frequency centeredino,q;=1.311[see Fig. 2e)]; (€) transmission spectrum for a symmetric quarter-wave
1D-PBG, with reference wavelengifyes=1 um and number of periods=5, refractive indices,=2 andn,=1.5.

this approach improves the results of the pgpéf, obtained the band edges, an;, Rg, of the two next transmission
by the Kronig-Penney model. peaks, are plotted when the dipole is inside the 4th period of
In Figs. 5, the decay rateR,, in units of the maximum the cavity and is pufc) on the center of the high index layer
valueR.inside the 1D-PBG, are plotted as functions of thex=(d/2)+(5/2) or (d) on the center of the low index layer
dimensionless frequenay/ w,.; when(a) the dipole is in the x=(d/2)+ 6, whered=h+l. In all Figs. §a)-5(d), the decay
center of the structure=d/2 or (b) on the surfacez=0 and rate is strongly suppressed in the band gapw;
x=d. Moreover, the decay raté®, andRs, corresponding to =[0.84,1.16, since the DOM is suppressed hdfég. 3).
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maximum for odd values afi and are null for even value of

n (Fig. 2); moreover, the decay rai;, corresponding to the
high band edge, presents the maximum pRak, as it could

be intuitively suggested by the placement of the dipole inside
the symmetric 1D-PBG. For the 1D-PBG with the param-
eters above consideredg=1 um, N=5, n,=2 andn,=1.5,

the ratio betweerR,,x and the peak of the emission rd®e

is 2.152.

When the dipole is on the surfacgs0 andx=d of the
structure[Fig. 5b)]: the dipole can be coupled to all the
QNMs |n), in fact the QNM intensities,, are not null onx
, , =0 andx=d (Fig. 2); moreover, the peaks of the decay rates
0 0.5 1.0 15 20 R, and Rs, corresponding to the two band edges, present

/ey similar values on the peaks of the decay ra®s corre-
sponding to the other transmission resonances, as it could be
for a symmetric 1D-PBG with quarter wave stacks: reference wave'—mu't'vely suggeste({all the QNM intensitiesl,, have the
length \e=1 um, number of perioddN=5, refractive indiceq, same values in=0 andx=d (_F'g' 2)]. For the 1D-PBG with
=2 andn,=1.5[5]. The DOM is plotted as a function of the dimen- the parameters above considered, the peak of the decay rates
sionless frequenci/ wer and is normalized to a bulk velocityy, ~ Ra.s IN UNit Of Ry, is 0.4052; instead, the ratio between the
which corresponds to scaling the DOM by that of an infinite homo-Ra 5 Peak and thék; s peak is 0.9491.

geneous material with an effective index that is the harmonic mean When the dipole is inside the 4th period of the cavity, if it
of n,, andn; [20]. is put on the center of the high index layer(d/2)+(5/2)

[Fig. 5c)]: the decay rateR,, corresponding to the low-
When the dipole is in the cent&=d/2 of the 1D-PBGFig.  frequency band edge, is enhanced, becausex=ifd/2)
5(a)]: the dipole can be coupled just to the QNMswith an  +(5/2), the intensityl, of the QNM|4) is maximum(Fig. 2);
odd n, because, ix=d/2, the QNM intensitied,, have a moreover, the decay ratBs, corresponding to the high-

DOM (in units of 1/Veu)

FIG. 3. Density of modedOM) according to the QNM theory,

FIG. 4. Decay rateR,= g, o(X, w) (51), in units of the maximum decay rak,,, inside the 1D-PBG structure, plotted as a function of
the dimensionless spaeéd, whered is the length of the cavity, and as function of the dimensionless frequehey.s, wherew,gs is the
reference frequency of the cavity. The 1D-PBG structure is symmetric, with quarter wave stacks: reference wayglergtim, number
of periodsN=5, refractive indicesi,=2 andn;=1.5. In the conservative limjtL2], the dipole can be coupled to just one of tié¢+2L QNMs
in the[0, 2w,¢¢] range, which we can indicate with)=|n,0) andn e [0,2N]. In (a) is reported decay rates, for the coupling dipole-QNM
|3) [corresponding to the frequency depicted in Fig)R in (b) is printed the decay rat,, for the coupling dipole-QNM4) [corresponding
to the low-frequency band edge; see Fig)2 in (c) is reported the decay raf; for the coupling dipole-QNM5) [corresponding to the
high-frequency band edge; see Figc)2 and in(d) is printed the decay ratgg, for the coupling dipole-QNM6) [having the real part of the
frequency corresponding to the transmission peak reported in @yg. 2
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FIG. 5. For a symmetric quarter wave 1D-PBG, wihs=1 um, N=5, n,=2, andn=1.5, a dipole is coupled just to one of the
2N+1 QNMs in the[0, 2w,] range, which we have indicated hy) with ne [0, 2N]. The decay rateR, with ne [0, 2N], in units of the
maximum valueR,« inside the 1D-PBG, are plotted as functions of the dimensionless frequéngy; when(a) the dipole is in the center
of the cavityx=d/2; (b) the dipole is on one of the two surfaces0 andx=d. In (c) and(d) the decay rateR, andRs, corresponding to
the band edgesee Figs. @) and 2¢)], andRs, Rs, corresponding to the two next transmission pgake Figs. @)—2(d)], are plotted when
the dipole is inside the 4th period of the 1D-PBG and it is exa@lyn the center of the high index laygr(d/2)+(5/2); (d) in the center
of the low index layex=(d/2)+ 6, whered=h+l.

frequency band edge, is almost suppressed, because, evemafio Rs/R; is not too smaller, i.e., 2.245. The QNM ap-
the DOM is large(Fig. 3), the QNM intensityls is almost  proach to calculate the decay rate for a dipole in a 1D-PBG
null in the maximum of the QNM intensity, (Fig. 2. For  structure presents the advantage to develop a general quan-
the 1D-PBG with the parameters above considered, the pealim treatment. This approach agrees with the theoretical re-
of the decay ratdr,, in unit of Ry, is 0.7208; instead, the sults of the papefl9], that considers only a classical model.
peak ratioR,/Rs is 64.11 and the peak rati®,/R; is much  Moreover, the approach confirms the results of the paper
smaller, i.e., 8.162. [21], that is only a numerical investigation.

If the dipole is put on the center of the low index layer
x=(d/2)+ 6 [Fig. 5d)]: the decay ratdRs, corresponding to
the high-frequency band edge is enhanced, becausg, in
=(d/2)+ ¢, the intensityls of the QNM |5) have a relative In this work we take into consideration one-dimensional
maximum(Fig. 2); moreover, the decay raf®,, correspond- finite PBG structureq1D-PBG), i.e., finite length optical
ing to the low-frequency band edge, is decreased, becauseavities, with both sides open to an external environment and
even if the DOM is larggFig. 3), the QNM intensityl, is  containing a layered material inside. In the general case these
small in the second relative maximum of the QNM intensity structures cannot be studied as infinite structures, but we
I5 (Fig. 2). For the 1D-PBG with the parameters above con-have to consider the boundary conditions at the two ends.
sidered, the peak of the decay rd&e in unit of R,,, is  Electromagnetic field in these structures is well described by
0.8519; instead, the peak raffy/R, is 14.78 and the peak- using an extension of the quasinormal mo@@siM) theory

VI. CONCLUSIONS
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[6], first applied to optical cavities by Leungt al. [1-8.  tum QNM approach to the calculation of the decay rate of a
This theory provides a very good approach to this problentipole in 1D-PBG agrees with the theoretical results of the
from a classical standpoint, in fact the lack of energy conserpaper[19], that considers only classical models. Moreover,
vation for the cavity gives rise to complginstead of regl  this approach confirms the results of the paj&di, that is
eigenfrequencies for the field. Since the space-time evolutiognly a numerical investigation. Non-Hermitian Hamiltonians
operator for the field inside the cavity is not Hermitian, fieldsand ensuing complex eigenvalues also figure prominently in
modes cannot be considered norriad., coming from sta-  sjegman’s work on dissipative CQERS], but these works
tionary conditions but they are called quasinormal and the 4re semiclassical treatments in which the fields are consid-

QNM theory well covers this topic. QNM approach is Very greq aq: number, and the limik <d is considered, wherk
different from the pseudomodes one introduced by Da#on g 6 \wavelength and is the dimension of the structure.

al. [11]. In fact, the pseudomodes are obtained by the Fanq,h . oo
. e present paper goes beyond these limits, working in a
transformation of the normal modgs2], so they use an . different regime; the main results of this paper consist, at

ordinary metric and the canonical second guantization irst, in the introduction of the second quantization scheme
adopted; QNM do not, they use a specific definition for the, > q

norm (metric) and so a noncanonical second quantization isfor photonic crystals v]ewed as open systems, by using the
adoptedsee Refs[5,8,9). In the papef9], the quantization QNM theory. Then, using the just m_entlone_d fprmallsm, we
of the optical cavity on a quasinormal modes base was beetfudy the decay rate of an atom situated inside the crystal
done considering a mirror in one of the two sides of thePerformed by the Feynman propagator expressed in terms of
cavity; in this paper we have generalized the second quantfuasinormal functions. The formalism used in Secs. Il and
zation scheme for double open optical caviiesnoving the Il in particular th_e introduction of the two driving forces
nodal field condition at one end of the structuspecifying  Dier(t) andbyign(t), is an useful and well defined method for
the treatment for PBG structures in which field can enter an@ny initial state of the fields. Taking a coherent state instead
to go out from both sides. Various physical quantities areof @ thermal one, enables the study ofgeneral counter-
then written as diagonal or nondiagonal sums over QNMPropagating pumped cavity.

base. We wrote down the operatorial expansion of the field, The general version of this theory, as presented in the first
inside the cavity, in terms of quasinormal functions and opthree sections, could be applied to a large variety of optical
erators, extending the second quantization QNM-basegystems studied in the framework of the double-sides open
scheme[7]. We have introduced the Feynman's propagatorSystems, i.e., for future developments about photonic crystals
in terms of QNM, in order to describe the decay rate of a(@nd more general optical devigehis paper could serve as
dipole inside this finite structure. The resonance approxima@ reference on the subject.

tion is studied, verifying the enhancement of the decay rate
of excited states related to the behaviors of the equal-space

propagatorﬁ(x,w). In several numerical simulations we  The authors would like to thank Professor B. J. Hoenders
point out the links between the decay rate of the atom andbr the interesting discussions about the quasinormal modes
the quasi normal modes involved inside the cavity. The quantheory.
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