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I. INTRODUCTION

Photonic crystals can be viewed as particular optical cavi-
ties having the properties of presenting allowed and forbid-
den bands for the electromagnetic radiation traveling inside,
at optical frequencies. For these motivations these structure
are also named photonic band gap(PBG) [1]. In these struc-
tures, dispersive properties are usually evaluated assuming
infinite periodic conditions[2]. The finite dimensions of
PBGs conceptually modify the calculation and the nature of
the dispersive properties: this is mainly due to the existence
of an energy flow into and out of the crystal. A phenomeno-
logical approach to the dispersive properties of 1D PBG has
been presented in Ref.[3]. The application of the effective-
medium approach is discussed, and the analogy with a
simple Fabry-Pérot structure is developed by Sipeet al. in
Ref. [4].

The theory of quasinormal modes(QNM) [5] was been
introduced by Leunget al., in order to describe the electro-
magnetic field in one side open optical cavities. In these open
systems, in fact, because of the leakage, the “modes” of the
cavity are characterized by complex eigenfrequencies and for
this reason they are referred to as quasinormal modes[5].
Recently this classical theory it has been extended to optical
cavities open from both sides and in particular to 1D PBG
cavities[6]. The purpose of this paper consists in the exten-
sion of the second quantization scheme QNM based, first
introduced by Leung[7,8], to photonic band gap structures
considered as double open optical cavities and this is a natu-
ral continuation of the classical work[6]. We find expres-
sions of field correlator functions, as a formal application of
the just introduced formalism, in order to investigate the
problem of spontaneous emission of an atom inside the 1D-
PBG structure.

In the free space, quantization of a closed cavity can be
performed by using normal modes[9] where a plane wave-
based operator expansion of the field is used. An open cavity,
viewed as a dissipative system, cannot be quantized unless
[10] one consider the bath being part of the total universe.
Different methods of description of these systems are dis-

cussed in[11,12], but the starting points of this work are very
different. Some of these differences(between pseudomodes
[11] and the quasinormal modes) will be discussed later in
this work. It has already been made an essential first step
towards the application of QNMs to cavity quantum electro-
dynamics phenomena[7]. The second quantization of a sca-
lar field in an open cavity is formulated, from first principles,
in terms of the QNMs, which are the eigensolutions of the
evolution equation, decaying exponentially in time as energy
leaks to outside[7].

The behavior of systems coupled to dissipative reservoirs
represents a central theme of quantum optics. Technological
developments, in the form of high quality and high cavity
finesse, led to the extension of such studies also into another
direction, which has come to be known as cavity QED.
Spontaneous and stimulated emissions are fundamental pro-
cesses resulting from the interaction between radiation and
matter. They depend not only on the properties of the excited
atomic system but also on the nature of the environment to
which the system is optically coupled. Spontaneous emission
in a one-dimensional Fabry-Pérot-type optical cavity is ana-
lyzed quantum mechanically in Ref.[13]; this link with the
density of modes has been put into evidence in Ref.[14], in
particular the theory of spontaneous emission from an ini-
tially excited two-level atom in a one-dimensional optical
cavity with output coupling from both sides is developed in
Ref. [15].

It is well known that one of the more interesting features
of PBG structures is their ability to alter the spontaneous
emission of probe atoms embedded in the periodic lattice;
this is due to the electromagnetic field modification induced
by the structure[16]. Large enhancement and complete inhi-
bition of atomic spontaneous emission can be obtained. It
was in 1946 that Purcell[17] first predicted that nontrivial
boundary conditions on electromagnetic field in the vicinity
of an excited atom could alter its decay rate. In the wake of
theoretical promulgation of PBG structures, concern has
turned to the question of the behaviour of atomic decay rate
in such structures[18]. In particular, it was predicted that the
decay rate could be suppressed for atoms located inside PBG
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when their resonant emission frequency was in the photonic
band gap. In this frequency range, the electromagnetic den-
sity of modes(DOM) is very small. Resonance enhancement
of decay rate was expected at the photonic band edges where
the DOM was anomalously large. In fact, the DOM and the
electromagnetic modal fields are altered at the position of the
atom. Reference[19] considers a more sophisticated model
of atomic spontaneous emission and classical radiation in a
finite 1D-PBG. The full three-dimensional(3D) or two-
dimensional (2D) problem is reduced to a finite one-
dimensional(1D) model, which is analytically solved by us-
ing algebraic transfer matrix techniques[20]. In Ref. [21],
atomic spontaneous emission, in one-dimensional photonic
band-gap structures, is numerically investigated. Both the
temporal and spatial dynamics of the electromagnetic field
and the atomic polarization are treated by a propagation
method that allows up to easily and realistically model ma-
terial boundary conditions for finite structures.

Therefore although a full analysis of the spontaneous
emission process should be performed in a 3D geometry, we
would like to put into evidence how the QNM approach,
limited to 1D open( finite) structure, is consistent with re-
sults already known in literature[19,20], thank to the possi-
bility of the introduction of definition of density of modes.

The present paper is organised as follows. In Sec. II, the
QNM approach is introduced and briefly compared with the
theory of damped harmonic oscillators[22]. In Sec. III, the
essential extension of the second quantization is provided for
one dimensional double open cavities, by using a Lagrangian
approach[23] and introducing two driving functions that
take into consideration the effect of the external space to the
cavity. In Sec. IV, field correlation functions and the Feyn-
man propagator is introduced[24,25], in order to calculate
the decay rate of an atom inside an open cavity, in presence
of the vacuum fluctuations outside the cavity. In Secs. V and
VI, an application to a quarter-wave symmetric 1D-PBG is
reported and the results are discussed.

II. QUASINORMAL MODES APPROACH

The concept of quasinormal modes has been developed
for open systems wherein the electromagnetic field satisfies
the wave equation[8,5]:

F ]2

]x2 − rsxd
]2

]t2
Gfsx,td = 0, s1d

wherersxd=fnsxd /cg2, with nsxd the refractive index of the
material andc the vacuum light speed.

The evolution equation(1) is defined in a finite interval
C=f0,dg, representing the geometry of the finite open cavity.
Attention is restricted to systems having a discontinuity in
x=0 andx=d (say steps), and no tail beyondx=0 andx=d,
i.e. [6],

rsxd = r0 for x , 0,x . d, s2d

wherer0=fn0/cg2, andn0 is the outside refractive index.
Quasinormal function space is defined through Eq.(1) in

association with the following outgoing wave conditions

]xfsx,td = Îr0]tfsx,td for x , 0,

]xfsx,td = − Îr0]tfsx,td for x . d. s3d

Due to the above conditions(3), the electromagnetic spec-
trum becomes discrete; heuristically, the eigenfrequencies
are spaced byDv<pc/d. Computationally and conceptu-
ally, this discreteness is much more convenient than dealing
with the infinite space of the universe, for which the spec-
trum would be continuous inv. The consequence is that
inside the finite space of the cavity, energy is no longer con-
served, and mathematically the time evolution operator is no
longer hermitian.

However the general function satisfying Eqs.(1) and (3)
and can be written as[6]

wsx,td = o
n

anwnsx,td = o
n

anfnsxde−ivnt, s4d

wherean are suitable coefficients,fnsxd are the quasinormal
mode functions, andvn are the correspondent frequencies
with Im vn,0. The coupleffnsxd ,vng has to satisfy the fol-
lowing equation[8,5]:

F d2

dx2 + vn
2rsxdG fnsxd = 0. s5d

In QNM’s space, the norm of the quasinormal function is a
complex number and it is given by the following expression
[6]:

kfnufnl = 2vnE
0

d

rsxdfn
2sxddx+ iÎr0ffn

2s0d + fn
2sddg, s6d

where the main differences with the ordinary definition of
norm [9] is the presence offn

2sxd rather thanufnsxdu2 and the
two additive “surfaces terms”iÎr0fn

2s0d and iÎr0fn
2sdd.

It is interesting to observe that for each single QNM func-
tion wnsx,td, (4) i.e., [8,5],

wnsx,td = fnsxde−ivnt, s7d

three appropriate real constantsm, g and k exist in such a
way that wnsx,td satisfies the following damped harmonic
oscillator equation[22]

m]ttwn + g]twn + kwn = 0. s8d

This point can be easily understood substituting Eq.(7) into
Eq. (8), obtaining

msvnR
2 − vnI

2 d − gvnI − k = 0,

2mvnRvnI + gvnR= 0, s9d

which is an always solvable system, where the complex fre-
quencyvn has been decomposed in its real and imaginary
parts vn=vnR+ ivnI (with vnR=Revn and vnI=Im vn). In
conclusion, the temporal behavior expressed by Eq.(7) is
strictly similar to the one coming from the damped harmonic
oscillator theory[22]. For the QNM theory, however, the
origin of damping is not the presence of a first order time
derivative for the field; but the escape of energy from the
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two sides of the structure, due to the outgoing wave condi-
tions (3).

III. SECOND QUANTIZATION

Let us now consider an open cavity of lengthd, filled with
a medium having a refractive index space dependentnsxd, in
the presence of two e.m. input fields, onefleftsx,td coming
from the left side, the otherfrightsx,td from the right side.

If the refractive index satisfies conditions(2) (see[8,6]),
the QNMs form a complete basis only inside the cavity,
and the e.m. field can be calculated as a superposition of
QNMs [7]

fsx,td = o
n

anstdfn
Nsxd for 0 ø x ø d, s10d

where the apexN reminds thatfn
Nsxd= fnsxdÎ2vn/ kfnu fnl are

the normalized QNM functions. We can see that Eq.(10)
is an extension(generalization) of previous Eq.(4). In fact,
the superposition coefficientsanstd satisfy the dynamic equa-
tion [7]

ȧnstd + ivnanstd =
i

2vn
Îr0

ffn
Ns0dbleftstd + fn

Nsddbrightstdg,

s11d

where two driving forcesbleftstd andbrightstd are linked to the
incoming (real) fields fleftsx,td and frightsx,td coming re-
spectively from the left and right side[7]. The relation be-
tween these quantities are given by

bleftstd = − 2Îr0u]xfleftsx,tdux=0,

brightstd = 2Îr0u]xfrightsx,tdux=d. s12d

Of course the boundary conditions satisfied by the two in-
coming fieldsfleftsx,td andfrightstd have to be given in the
following form:

]xfleftsx,td = − Îr0]tfleftsx,td for x ø 0,

]xfrightsx,td = Îr0]tfrightsx,td for x ù d. s13d

globally called incoming wave conditions, with respect to
Eq. (3). In this new scenario it is easy to verify that expres-
sion(4) is linked to a particular case of Eq.(11), in which we
have bleftstd=brightstd=0. From a simple inspection of Eq.
(11) we see that all the QNM coefficientsanstd are driven by
the two driving forcesbleftstd and brightstd; so, even if each
QNM coefficient has the property Imsvnd,0, incoming
waves conditions(12) ensure the presence of quasistationary
regime solutions, as well as described in[7]. The coupling
between the QNM inside the cavity and the driving forces
bleftstd andbrightstd is determined by the surface values of the
functions fn

Ns0d and fn
Nsdd.

It is immediate to show that the Lagrangian density for
the evolution equation(1) is [23]

L = hrsxdf]tfsx,tdg2 − f]xfsx,tdg2j/2. s14d

In fact, if we write down the equation of Lagrange

d

dt
S ]L

]s]fd
D =

]L

]f
− ]xS ]L

]s]xfd
D , s15d

using Eq.(14), we have

]L

]s]tfd
= rsxd]twsx,td, s16d

]L

]f
= 0, s17d

and

]x
]L

]s]xfd
= − ]xxfsx,td. s18d

So it is clear that Eq.(14) expresses the evolution equation
(1) and corresponds to the Lagrangian density. The conju-
gated function, with respect to the Lagrangian density(14),
can be calculated as an immediate consequence of the defi-
nition [23]

f̃sx,td ;
]L

]s]tfd
= rsxd]tfsx,td. s19d

So, from Eq.(16), the conjugated function offsx,td is the
product ofrsxd and the time derivative]tfsx,td. The Hamil-
ton density function associated to the evolution equation(1)
is [23]

H = rsxdf]tfsx,tdg2 − L =
f]xfsx,tdg2

2
+ rsxd

f]tfsx,tdg2

2
.

s20d

As discussed by Hoet al. [7], the cavity energy deduced by
Eq. (20), in the conservative limit, does not depend on timet.
The introduction of the conjugated function in Eq.(19) en-
ables us to use this concept in the definition of the inner
product as will be clear in what follows.

Our purpose is to develop a formalism whereby field
quantization[9] can be implemented in terms of QNMs. This
allows us to interpret the expansion coefficientsanstd appear-
ing in Eq. (10), as generalized annihilation and creation op-
erators for the discrete QNMs.

Coefficientsanstd are the expansion terms on the QNM
base[8]:

anstd =
kfn

Nsxdufsx,tdl
kfn

Nsxdufn
Nsxdl

, s21d

where the inner product is given by the following expression
[8]:

kFsx,tduCsx,tdl = iE
0

d

fFsx,tdC̃sx,td + F̃sx,tdCsx,tdgdx

+ Fs0,tdCs0,td + Fsd,tdCsd,td. s22d

The tilded functionsC̃ andF̃ are respectively conjugated to
C andF, in view of the Lagrangian(14).

Coefficientsanstd, functionsfn
Nsxd and frequenciesvn sat-

isfy symmetry properties[5]:
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v−n = − vn
* s23d

and [5]

a−nstd = an
*std, f−n

N sxd = ffn
Nsxdg * . s24d

So we can rewrite Eq.(10) in the following way:

fsx,td = o
n=0

`

fanstdfn
Nsxd + an

*std„fn
Nsxd… * g. s25d

The second quantization proceeds by first promotingfsx,td
to field operator[9]. To this end, in analogy with the standard
quantum expansion of the free field, where we find creation
and annihilation operator multiplied by plane wave terms
into a relation similar to Eq.(25) (in which functionsfn

N are
substituted byeikx), functionsanstd can be regarded as opera-
tors.

We adopt the following equal time canonical quantization
rules for the fieldf̂sx,td operator[9]

ff̂sx,td,f̃ˆ sx8,tdg = idsx − x8d. s26d

This field may be regarded as operator for the entire uni-
verse, which is a conservative system. The same projection
formula (21), as in the classical case, now definesânstd and
ân

†std as QNM-space operators, obeying the equation of mo-

tion (11). We can express the field operatorf̂sx,td in terms
of the operatorsânstd and ân

†std as

f̂sx,td = o
n=0

`

fânstdfn
Nsxd + ân

†std„fn
Nsxd… * g. s27d

If we calculate the generic commutator between two QNMs,
we have

fân,ân8g =
fkfn

Nsxd,fsx,tdl,kfn8
N sxd,fsx,tdlg

kfn
Nsxd, fn

Nsxdlkfn8
N sxd, fn8

N sxdl
s28d

and by using relation(26) we have

fân,ân8g =
vn8 − vn

4vnvn8
E

0

d

rsxdfn
Nsxdfn8

N sxddx. s29d

Quasinormal functionsfn
Nsxd are orthogonal with respect to

the norm(22), so we can write[6]

isvn + vn8dE
0

d

rsxdfn
Nsxdfn8

N sxddx

= Îr0ffn
Ns0dfn8

N s0d + fn
Nsddfn8

N sddg, s30d

that is valid forn8Þn. Using the relation(30), commutator
(29) becomes

fân,ân8g =
vn8 − vn

4vnvn8

Îr0ffn
Ns0dfn8

N s0d + fn
Nsddfn8

N sddg

isvn + vn8d
s31d

that is valid only ifn8Þn. In order to understand better these
canonical quantization rules, we can put in Eq.(31) n8=−n.
For the relations(23) and (24) we have

fân,â−ng = fân,ân
†g =

Refvng
2uvnu2 E0

d

rsxdufn
Nsxdu2dx s32d

or equivalently

fân,ân
†g = −

Îr0 Refvng
4uvnu2 Imfvng

fufn
Ns0du2 + ufn

Nsddu2g. s33d

In the paper[7] it is possible to find a simple demonstration
in which relation (32), in the conservative and stationary
limit, is fân,ân

†g=1/2vn. This expression is similar to the one
concerning the well known annihilationsĉnd and creation
sĉn

†d operators, if we assume for the QN operatorsân

=Î2vnĉn and ân
†=Î2vnĉn

†. This result can be intuitively un-
derstood observing that, when we consider the conservative
limit, i.e., when we consider the limit of closed cavity(the
field tends to the nodal conditions at the two ends of the
structures), in Eq. (33) we have Imfvng→0: this imaginary
part goes to zero with the same velocity ofufn

Ns0du2

+ ufn
Nsddu2, since the damping is related to escape of energy

from the two ends of the structures.
We would like to remark that QNM approach is very dif-

ferent from the pseudomodes approach introduced by Dalton
et al. [11]. In fact, the pseudomodes are obtained by the Fano
transformation of the normal modes[12], so they use an
ordinary metric and the canonical second quantization is
adopted; QNM do not, they use a specific definition for the
norm (metric) and so a noncanonical second quantization is
adopted(see. Refs.[5,8,9]).

Modification of the commutation relations with respect to
the canonical ones, gives rise to a modification of the emis-
sion properties of a dipole embedded in a 1D microcavity, as
clearly described in the work of Uedaet al. [26]. We ob-
serve, from Eq.(32), that the commutation rules of QNM
quasimodes exhibit a modification with respect to the ca-
nonical one, and therefore we have to expect an influence on
the spontaneous emission process due to the cavity geometry.

In what follows we analyze the spontaneous emission pro-
cess in 1D open cavity. Although a full analysis of the spon-
taneous emission process should be performed in a 3D ge-
ometry, we would like to put into evidence how this
approach, limited to 1D open(finite) structure, is consistent
with results already known in literature[19,20], thanks to the
possibility of the introduction of definition of density of
modes; we remember that the density of modes is propor-
tional to the spontaneous emission rate of an embedded
probe atom, by Fermi’s golden rules.

IV. ATOMIC SPONTANEOUS EMISSION

Since the two classical incoming fieldsfleftsx,td and
frightsx,td introduced in the previous section are real func-
tions, the corresponding field operators are Hermitian, hence
the two driving forces in the quantum domain will become
Hermitian operators too. Let us quantize these two driving
forces, viewing the two fields in the quantum domain as two
uncorrelated fields having onlyvacuum fluctuations[9].

In the Fourier transformed domain, Hermiticity does not

hold; so the transformed driving forces operatorsb̂leftsvd and
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b̂rightsvd are not hermitian in general. These two fields have a

zero mean valuekb̂svdl=0 but a nonzero root-mean-square
deviation[7]:

kb̂†svdb̂svdl = Ēsvd = "v/2, s34d

where" is the Planck constant.
The phenomenon ofspontaneous emissionof an atom can

be considered as anemission induced by the vacuum fluctua-
tions. In fact, even in absence of incident photons, an atom
inside the open cavity sees the vacuum fluctuations related to
the quantum mechanical nature of the electromagnetic field
outside the cavity. Under the effect of these fluctuations, it
can emit a photon and fall back into a lower energy state(the
energy of the global system being conserved during this pro-
cess).

In order to study the spontaneous decay rate of an atom
inside the cavity, with the QNM formalism we have to find
the correlation field functions in terms of quasinormal func-
tions [9,7]. In what follows, we use the same procedure that
Leunget al. have used in the contest of optical cavities open
from one side only[7]. The results that we find in this sec-
tion are valid for double open optical cavities and, in particu-
lar, in the next section, we apply the treatment to photonic
band gap structures.

The formalism derived in the previous section for expand-
ing the quantum electromagnetic fieldf̂sx,vd in terms of
creation and annihilation operatorsân

†svd and ânsvd can be
applied to the calculation of equilibrium correlation func-
tions, yielding discrete representations for the cavity field
correlator:

F̃sx,x8,vd = kf̂†sx,vdf̂sx8,vdl

= Ēsvdo
n,n8

fn
Ns0dfn8

N s0d + fn
Nsddfn8

N sdd

4r0vnvn8svn − vdsvn8 + vd
fn
Nsxdfn8

N sx8d.

s35d

The above formula(35) leads to a clear physical interpreta-
tion of pole structure in complex planevPC: the QNM
poles vn, with Imfvng,0, correspond to the cavity reso-
nances excited by the vacuum fluctuations.

Another important correlation function is the Feynman
propagator[25],

GFsx,t,x8,t8d = − ikThf̂sx,tdf̂sx8,t8djl, s36d

in whichT denotes the time-ordered thermal propagator[24].
Let us now see how the form given in Eq.(36) can be

interpreted[27]. First, if t, t8, the matrix element describes
the amplitude of a particle being created at a timet, which
propagates in space-time and is annihilated at a later timet8.
Similarly, if t. t8, Eq. (36) describes the amplitude of a par-
ticle being created at a timet8, which propagates in space-
time and is annihilated at a later timet. This, in a sense, is
the physical meaning of the propagator, which also shows
why it should be important to calculate the amplitudes of

various processes involving particle interactions. After all,
between interactions, the particles just propagate in space-
time.

Taking the Fourier transform of the definition(36) leads
to a direct relation in terms of the cavity correlator(35), as
from [27],

G̃Fsx,x8,vd = − lim
«→0
E

−`

` dv8

2p
S 1

v8 + v − i«
+

1

v8 − v − i«
D

3F̃sx,x8,v8d. s37d

Substitution of the right-hand side of Eq.(35) into Eq. (37)
yields Feynman propagator as

G̃Fsx,x8,vd = − i
"

2 o
n,n8

fn
Ns0dfn8

N s0d + fn
Nsddfn8

N sdd

4r0vnvn8svn + vn8d

3Fusvd
vn

vn − v
+ us− vd

vn8

vn8 + v
G fn

Nsxdfn8
N sx8d,

s38d

whereusvd is the unit step function.
In paper[7], it has been remarked that the nondiagonal

representation of Feynman propagator in terms of QNMs has
some nice properties, and it is in fact the unique representa-

tion if the fieldf̂sx,vd and the conjugate momentumf̃ˆ sx,vd
are considered together. There are of course many ways to
understand why the Feynman propagator is nondiagonal; one
of the most direct is via the equation of motion(11) which
shows that all the QNM coefficientsânsvd are driven by the

two driving forcesb̂leftsvd and b̂rightsvd, so that in general
different coefficients will have phase coherence and hence a
nonzero correlation. However, the cavity correlator(35) and
the Feynman propagator(38) become diagonal, as they
should, in the conservative limit whenuImfvngu!Refvng. In
agreement with the creation-annihilation interpretation of the
operatorsansvd andân

†svd, the conservative limit is such that

kân8svdân
†svdl <

p

v
dsv − vnddn,n8. s39d

It is now profitable to consider the very simple example of
an atom inside the open cavity(at a pointx) which is stimu-
lated by the vacuum fluctuations outside the cavity(at fre-
quencyv); in the dipole approximation and for weak atom-
pump coupling, the decay rate is related to the equilibrium
equal-space propagator[25]

D̃sx,vd ; G̃Fsx,x,vd. s40d

The conservative limit[7] is the only case in which a single
QNM can dominate(narrow resonancesuIm vnu! uRevnu)
and the vacuum fluctuations can be coupled to just one QNM
sv.Refvngd; so, if the single-QNM conditionn8=−n is in-
serted into Eq.(38), the dipole at the pointx is coupled to the
nth QNM and the equal-space propagator becomes
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D̃nsx,vd =
1

4Îr0

an

uvnu2
ufn

Nsxdu2Fusvd
vn

v − vn
+ us− vd

vn
*

v − vn
* G ,

s41d

where the normalization integralsan are defined and calcu-
lated as[Eq. (30)]

an =
1

d
E

0

d

rsxdufn
Nsxdu2dx=

Îr0/d

2uIm vnu
fufn

Ns0du2 + ufn
Nsddu2g.

s42d

Only the sum of the two terms in Eq.(41) preserves the

fundamental relation[9] D̃Rsx,vd=fD̃Asx,vdg* for real v,

whereD̃Rsx,vdfD̃Asx,vdg is the retarded(advanced) propa-

gator obtained fromD̃sx,vd by continuation from positive

(negative) frequencies. Moreover,D̃sx,vd satisfies term by

term the equally fundamental inequality ImfD̃sx,vdgø0 on
the real axis[9]. A violation of this inequality could lead to a
retardered atom propagator that has poles in the upper half
plane ofvPC, signifying an unphysical instability.

The decay rate in the open cavitydnsx,vd, in units of the
one in the universe[9], is physically related to the equal-

space propagatorD̃nsx,vd, mathematically by the following
definition [25]

dnsx,vd = −
2vÎr0

p
ImfD̃nsx,vdg, s43d

for real positive frequenciesv.0.
Inserting Eq.(41) into Eq. (43), under the hypothesisv

.Refvng@ uImfvngu, the decay ratednsx,vd can be ex-
pressed as

dnsx,vd >
1

2d

ufn
Nsxdu2

an

snsvd
Kn

, s44d

wheresnsvd is the global density of probability(DOM) for
the nth QNM [13–15]

snsvd = Kn
d

p

an
2uIm vnu

sv − Revnd2 + Im2 vn
, s45d

Equations(44) and (45) confirm the validity of the QNM
approach; in fact, the Fermi’s golden law has been obtained:
if a dipole inside the open cavity(x-point) is stimulated by
the vacuum fluctuations outside the cavity(v-frequency)
which are coupled just to thenth QNM, then the decay rate
dnsx,vd is proportional, in particular, to the QNM intensity
ufn

Nu2 in the pointx, and also to the DOMsn at the frequency
v.

Under the hypothesis of narrow resonancesuIm vnu
! uRevnu the normalization integrals can be approximated to
an>1/d, and the normalization constantsKn can be obtained
by the following condition

E
Re vn−Dvn

Re vn+Dvn

snsvddv =
1

d
. s46d

In fact, in the cavity of lengthd, the dipole is coupled just to
the nth QNM, with resonance Revnù0 and around 2Dvn
!Revn, whereDvn= uIm vnu is such thatsnsRevn±Dvnd
=snsRevnd /2.

V. 1D-PHOTONIC CRYSTALS

With reference to Fig. 1, let us now consider a symmetric
1D-PBG structure which consists ofN periods plus one
layer; every period is composed of two layers respectively
with lengthsh and l and with refractive indicesnh and nl,
while the added layer is with parametersh andnh. The sym-
metric 1D-PBG structure consists of 2N+1 layers with a
total lengthd=Nsh+ ld+h. If the two layers external to the
symmetric 1D-PBG structure are considered, the 1D-spacex
can be divided into 2N+3 layers; they areLk=fxk,xk+1g, k
=0,1, . . . ,2N+1,2N+2, with x0=−`, x1=0, x2N+2=d, and
x2N+3= +`. The refractive indexnsxd takes a constant value
nk in every layerLk, k=0,1, . . . ,2N+1,2N+2, i.e.,

nsxd = 5n0, for x P L0, L2N+2,

nh, for x P Lk, k = 1,3, . . . ,2N − 1,2N + 1,

nl , for x P Lk, k = 2,4, . . . ,2N.
6
s47d

As recently described in[6], for symmetric 1D-PBG struc-
tures, the expression of the complex norm of a generic QNM
functionskfnu fnl can be obtained in a very simple manner as
a derivation process by using an auxiliary function method,
instead of an integration[as intuitively suggested by the ex-
pression(6)]. Since in these hypothesis the calculation of the
norm is rather simple, if we define

gn =
kufnufnl

2iÎr0

, s48d

the normalized intensity of thenth QNM, i.e., ufn
Nsxdu2

= ufnsxdu2u2vn/ kfnu fnlu, can be reexpressed asufn
Nsxdu2

=s1/Îr0duvn/gnuufnsxdu2, and the decay rate(44) and(45), in
units of the one in the universe[9], becomes

dnsx,vd =
1

2
Uvn

gn
Uufnsxdu2

snsvd
Kn

Îr0

,

FIG. 1. Refractive indexnsxd for a symmetric 1D-PBG withN
periods plus one layer; every period is composed by two layers,
having respectively lengthsh andl and refractive indicesnh andnl.
The added layer has parametersh andnh.
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snsvd =
Kn

pd

uIm vnu
sv − Revnd2 + Im2 vn

. s49d

As proved in[6], for a quarter wave symmetric 1D-PBG
with N periods andvref as reference frequency, there are
2N+1 families of QNMs, i.e.,Fn

QNM, nP f0,2Ng; the Fn
QNM

family of QNMs consists of infinite QNM frequencies, i.e.,
vn,m, mPZ=h0, ±1, ±2, . . .j, which have the same imagi-
nary part, i.e., Imvn,m=Im vn,0, mPZ, and are lined with a
step D=2vref, i.e., Resvn,md=Resvn,0d+mD, mPZ. It fol-
lows that, if the complex plane is divided into some ranges,
i.e., Sm=hmD,Rev, sm+1dDj, mPZ, each of the QNM
family Fn

QNM drops only one QNM frequency over the range
Sm, i.e.,vn,m=sRevn,0+mD , Im vn,0d; there are 2N+1 QNM
frequencies over the rangeSm and they can be referred as
vn,m=vn,0+mD, nP f0,2Ng. The QNM frequencies are not
uniformly distributed in the complex plane, but they arrange
themselves in order to form permitted and forbidden bands,
in agreement with the known characteristics of these struc-
tures[8]. Moreover, the more the 1D-PBG presents a large
number of periodssL.lrefd with an high refractive index
stepsnh−nl .n0d, the more thenth QNM frequencyvn,0 de-
scribes thenth transmission peak in the sense that Resvn,0d
comes near to the resonance frequency of thenth transmis-
sion peak,uImsvn,0du approximates the FWHM of thenth
transmission peak, andufnsxdu2 approximates the field inten-
sity distribution inside the 1D-PBG structure at thenth trans-
mission peak[6].

The norm(48) of the QNM un,ml with frequencyvn,m
=vn,0+mD becomesgn,m=kfn,mu fn,ml /2iÎr0, such that

gn,m =
gn,0

vn,0
vn,m =

gn,0

vn,0
svn,0 + mDd. s50d

The nth QNM family is such that thegn,m norm is periodic
with a stepGn=gn,0sD /vn,0d. In Ref. [6] all the simplified
expressions of relations(48) and (50) in terms of two par-
ticular coefficients of an auxiliary functions can be found.

So, for the symmetric 1D-PBG(47) with quarter wave
stacksnhh=nll =lref /4, the decay rate(49) of a dipole in the
point x, coupled to the QNMun,ml becomes

dn,msx,vd =
1

2
Uvn,0

gn,0
Uufn,msxdu2

sn,msvd
Kn,m

Îr0

,

sn,msvd =
Kn,m

pd

uIm vn,0u
sv − Revn,0 − mDd2 + Im2 vn,0

. s51d

Since in the 1D-PBG of lengthd, the dipole is coupled with
the QNM un,ml, at a frequency resonance Revn,m=Revn,0
+mDù0, if we consider the narrow bandDvn=2uIm vn,0u
!Revn,m, we can evaluate the normalization constantKn,m

ssd

in Eq. (51) by using the following condition:

E
Re vn,0+mD−uIm vn,0u

Re vn,0+mD+uIm vn,0u

sn,msvddv =
1

d
. s52d

As an example let us consider a symmetric quarter wave
1D-PBG, with reference wavelengthlref=1 mm, number of
periodsN=5, refractive indicesnh=2 andnl =1.5. There are
2N+1 QNMs in thef0,2vrefg range. In the hypothesis of
single resonance, a dipole inside the structure can be coupled
to just one of these QNMs, which areunl= un,0l with n
P f0,2Ng.

In Figs. 2, the QNM intensitiesIn= ufn,0sxdu2 [6], in units
of the maximum valueImax inside the 1D-PBG, are plotted as
a function of the dimensionless spacex/d, whered is the
length of the structure, for(a) the QNM u3l, having the fre-
quency closed to the first transmission peak before the first
band edge,(b) the QNM u4l, corresponding to the low-
frequency band edge,(c) the QNM u5l, corresponding to the
high-frequency band edge, and(d) the QNM u6l, closed to
the first transmission peak after the high-frequency band
edge. When we speak about frequency, we usually refer to
the real part of the frequencyvn, if not otherwise specified.
The QNMs corresponding to the two band edges present the
largest intensities in the 1D-PBG. The QNM intensityIn has
n+1 minima. In the center of the structurex=d/2, the QNM
intensities have a maximum for odd values ofn and are null
for even values ofn and, on the two surfaces of the cavity,
x=0 andx=d, all the graphs show the same value for the
(relative) intensity. Finally,IN is almost null in the range in
which there is a maximum ofIN−1, and IN−1 is small in the
range in which there is the second relative maximum ofIN.

In Fig. 3, the DOM according to the QNM theory[6] is
plotted as a function of the dimensionless frequencyv /vref
and is normalized to a bulk velocity vbulk, which corresponds
to scaling the DOM by that of an infinite homogeneous ma-
terial with an effective index that is the harmonic mean ofnh
and nl [20]. The photonic band gap is in a regionv /vref
=f0.84,1.16g; the suppression of the DOM in the gap is
clear, as the enhancement of the DOM at the band-edge reso-
nancesvlow/vref=0.84 andvhigh/vref=1.16, where the spec-
tral transmission is one; there are other less-pronounced
peaks in the DOM on the pass-band at the frequencies that
correspond to other transmission resonances[20].

In Figs. 4, decay ratesRn=dn,0sx,vd, (51) in units of the
maximum valueRmax inside the 1D-PBG, are plotted as a
function of the dimensionless spacex/d and the dimension-
less frequencyv /vref for (a) R3, the coupling dipole-QNM
u3l having the frequency closed to the first transmission peak
before the low frequency band edge,(b) u4l, i.e., the coupling
dipole-QNM corresponding to the low-frequency band edge,
(c) R5, the coupling dipole-QNMu5l corresponding to the
high-frequency band edge, and(d) R6, the coupling dipole-
QNM u6l corresponding to the next transmission peak after
the high frequency band edge. The decay ratesR4 and R5,
corresponding to the two band edges, stand out respect toR3
and R6 of the next transmission peaks, because, in the two
band-edge resonances, the DOM is enhanced(Fig. 3) and the
QNMs present the most large intensities inside the structure
(Fig. 2). Moreover, the decay rateRn is centered around the
QNM frequencyvn and, like the QNM intensityIN, hasn
+1 minima along thex direction (Fig. 2). We note that the
QNM approach uses a realistic model for the 1D-PBG, as a
finite cavity with discontinuities in the refractive index, so
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this approach improves the results of the paper[19], obtained
by the Kronig-Penney model.

In Figs. 5, the decay ratesRn, in units of the maximum
valueRmax inside the 1D-PBG, are plotted as functions of the
dimensionless frequencyv /vref when(a) the dipole is in the
center of the structurex=d/2 or (b) on the surfacesx=0 and
x=d. Moreover, the decay ratesR4 andR5, corresponding to

the band edges, andR3, R6, of the two next transmission
peaks, are plotted when the dipole is inside the 4th period of
the cavity and is put(c) on the center of the high index layer
x=sd/2d+sd /2d or (d) on the center of the low index layer
x=sd/2d+d, whered=h+ l. In all Figs. 5(a)–5(d), the decay
rate is strongly suppressed in the band gapv /vref
=f0.84,1.16g, since the DOM is suppressed here(Fig. 3).

FIG. 2. QNM wave function intensitiesIn= ufn,0sxdu2 [5], in units of the maximum intensityImax, inside the 1D-PBG structure, plotted as
a function of the dimensionless spacex/d, whered is the length of the cavity. The 1D-PBG structure is symmetric, with quarter wave stacks:
reference wavelengthlref=1 mm, number of periodsN=5, refractive indicesnh=2 andnl =1.5. In thef0,2vrefg range there are 2N+1
QNMs, as well as the transmission peaks[6], i.e., unl= un,0l with nP f0,2Ng. (a) Intensity for QNMu3l, having the real part of the frequency
centered inv /vref=0.6891[see Fig. 2(e)]; (b) intensity for QNM u4l, corresponding to the low-frequency band edgev /vref>0.8397[see
Fig. 2(e)]; (c) intensity for QNM u5l, corresponding to the high-frequency band edgev /vref>1.160[see Fig. 2(e)]; (d) intensity for QNM
u6l, having the real part of the frequency centered inv /vref=1.311[see Fig. 2(e)]; (e) transmission spectrum for a symmetric quarter-wave
1D-PBG, with reference wavelengthlref=1 mm and number of periodsN=5, refractive indicesnh=2 andnl =1.5.
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When the dipole is in the centerx=d/2 of the 1D-PBG[Fig.
5(a)]: the dipole can be coupled just to the QNMsunl with an
odd n, because, inx=d/2, the QNM intensitiesIn have a

maximum for odd values ofn and are null for even value of
n (Fig. 2); moreover, the decay rateR5, corresponding to the
high band edge, presents the maximum peakRmax, as it could
be intuitively suggested by the placement of the dipole inside
the symmetric 1D-PBG. For the 1D-PBG with the param-
eters above considered,lref=1 mm, N=5, nh=2 andnl =1.5,
the ratio betweenRmax and the peak of the emission rateR7
is 2.152.

When the dipole is on the surfacesx=0 andx=d of the
structure[Fig. 5(b)]: the dipole can be coupled to all the
QNMs unl, in fact the QNM intensitiesIn are not null onx
=0 andx=d (Fig. 2); moreover, the peaks of the decay rates
R4 and R5, corresponding to the two band edges, present
similar values on the peaks of the decay ratesRn, corre-
sponding to the other transmission resonances, as it could be
intuitively suggested[all the QNM intensitiesIn have the
same values inx=0 andx=d (Fig. 2)]. For the 1D-PBG with
the parameters above considered, the peak of the decay rates
R4,5, in unit of Rmax, is 0.4052; instead, the ratio between the
R4,5 peak and theR3,6 peak is 0.9491.

When the dipole is inside the 4th period of the cavity, if it
is put on the center of the high index layerx=sd/2d+sd /2d
[Fig. 5(c)]: the decay rateR4, corresponding to the low-
frequency band edge, is enhanced, because, inx=sd/2d
+sd /2d, the intensityI4 of the QNM u4l is maximum(Fig. 2);
moreover, the decay rateR5, corresponding to the high-

FIG. 3. Density of modes(DOM) according to the QNM theory,
for a symmetric 1D-PBG with quarter wave stacks: reference wave-
length lref=1 mm, number of periodsN=5, refractive indicesnh

=2 andnl =1.5 [5]. The DOM is plotted as a function of the dimen-
sionless frequencyv /vref and is normalized to a bulk velocity vbulk,
which corresponds to scaling the DOM by that of an infinite homo-
geneous material with an effective index that is the harmonic mean
of nh andnl [20].

FIG. 4. Decay ratesRn=dn,0sx,vd (51), in units of the maximum decay rateRmax, inside the 1D-PBG structure, plotted as a function of
the dimensionless spacex/d, whered is the length of the cavity, and as function of the dimensionless frequencyv /vref, wherevref is the
reference frequency of the cavity. The 1D-PBG structure is symmetric, with quarter wave stacks: reference wavelengthlref=1 mm, number
of periodsN=5, refractive indicesnh=2 andnl =1.5. In the conservative limit[12], the dipole can be coupled to just one of the 2N+1 QNMs
in the f0,2vrefg range, which we can indicate withunl= un,0l andnP f0,2Ng. In (a) is reported decay rateR3, for the coupling dipole-QNM
u3l [corresponding to the frequency depicted in Fig 2(a)]; in (b) is printed the decay rateR4, for the coupling dipole-QNMu4l [corresponding
to the low-frequency band edge; see Fig. 2(b)]; in (c) is reported the decay rateR5 for the coupling dipole-QNMu5l [corresponding to the
high-frequency band edge; see Fig. 2(c)] and in(d) is printed the decay rateR6, for the coupling dipole-QNMu6l [having the real part of the
frequency corresponding to the transmission peak reported in Fig. 2(d)].
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frequency band edge, is almost suppressed, because, even if
the DOM is large(Fig. 3), the QNM intensityI5 is almost
null in the maximum of the QNM intensityI4 (Fig. 2). For
the 1D-PBG with the parameters above considered, the peak
of the decay rateR4, in unit of Rmax, is 0.7208; instead, the
peak ratioR4/R5 is 64.11 and the peak ratioR4/R3 is much
smaller, i.e., 8.162.

If the dipole is put on the center of the low index layer
x=sd/2d+d [Fig. 5(d)]: the decay rateR5, corresponding to
the high-frequency band edge is enhanced, because, inx
=sd/2d+d, the intensityI5 of the QNM u5l have a relative
maximum(Fig. 2); moreover, the decay rateR4, correspond-
ing to the low-frequency band edge, is decreased, because,
even if the DOM is large(Fig. 3), the QNM intensityI4 is
small in the second relative maximum of the QNM intensity
I5 (Fig. 2). For the 1D-PBG with the parameters above con-
sidered, the peak of the decay rateR5, in unit of Rmax, is
0.8519; instead, the peak ratioR5/R4 is 14.78 and the peak-

ratio R5/R6 is not too smaller, i.e., 2.245. The QNM ap-
proach to calculate the decay rate for a dipole in a 1D-PBG
structure presents the advantage to develop a general quan-
tum treatment. This approach agrees with the theoretical re-
sults of the paper[19], that considers only a classical model.
Moreover, the approach confirms the results of the paper
[21], that is only a numerical investigation.

VI. CONCLUSIONS

In this work we take into consideration one-dimensional
finite PBG structures(1D-PBG), i.e., finite length optical
cavities, with both sides open to an external environment and
containing a layered material inside. In the general case these
structures cannot be studied as infinite structures, but we
have to consider the boundary conditions at the two ends.
Electromagnetic field in these structures is well described by
using an extension of the quasinormal modes(QNM) theory

FIG. 5. For a symmetric quarter wave 1D-PBG, withlref=1 mm, N=5, nh=2, andnl =1.5, a dipole is coupled just to one of the
2N+1 QNMs in thef0,2vrefg range, which we have indicated byunl with nP f0,2Ng. The decay ratesRn with nP f0,2Ng, in units of the
maximum valueRmax inside the 1D-PBG, are plotted as functions of the dimensionless frequencyv /vref when(a) the dipole is in the center
of the cavityx=d/2; (b) the dipole is on one of the two surfacesx=0 andx=d. In (c) and(d) the decay ratesR4 andR5, corresponding to
the band edges[see Figs. 2(b) and 2(c)], andR3, R6, corresponding to the two next transmission peaks[see Figs. 2(a)–2(d)], are plotted when
the dipole is inside the 4th period of the 1D-PBG and it is exactly(c) in the center of the high index layerx=sd/2d+sd /2d; (d) in the center
of the low index layerx=sd/2d+d, whered=h+ l.
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[6], first applied to optical cavities by Leunget al. [1–8].
This theory provides a very good approach to this problem
from a classical standpoint, in fact the lack of energy conser-
vation for the cavity gives rise to complex(instead of real)
eigenfrequencies for the field. Since the space-time evolution
operator for the field inside the cavity is not Hermitian, fields
modes cannot be considered normal(i.e., coming from sta-
tionary conditions) but they are called quasinormal and the
QNM theory well covers this topic. QNM approach is very
different from the pseudomodes one introduced by Daltonet
al. [11]. In fact, the pseudomodes are obtained by the Fano
transformation of the normal modes[12], so they use an
ordinary metric and the canonical second quantization is
adopted; QNM do not, they use a specific definition for the
norm (metric) and so a noncanonical second quantization is
adopted(see Refs.[5,8,9]). In the paper[9], the quantization
of the optical cavity on a quasinormal modes base was been
done considering a mirror in one of the two sides of the
cavity; in this paper we have generalized the second quanti-
zation scheme for double open optical cavities(removing the
nodal field condition at one end of the structure) specifying
the treatment for PBG structures in which field can enter and
to go out from both sides. Various physical quantities are
then written as diagonal or nondiagonal sums over QNM
base. We wrote down the operatorial expansion of the field,
inside the cavity, in terms of quasinormal functions and op-
erators, extending the second quantization QNM-based
scheme[7]. We have introduced the Feynman’s propagator,
in terms of QNM, in order to describe the decay rate of a
dipole inside this finite structure. The resonance approxima-
tion is studied, verifying the enhancement of the decay rate
of excited states related to the behaviors of the equal-space

propagatorD̃sx,vd. In several numerical simulations we
point out the links between the decay rate of the atom and
the quasi normal modes involved inside the cavity. The quan-

tum QNM approach to the calculation of the decay rate of a
dipole in 1D-PBG agrees with the theoretical results of the
paper[19], that considers only classical models. Moreover,
this approach confirms the results of the paper[21], that is
only a numerical investigation. Non-Hermitian Hamiltonians
and ensuing complex eigenvalues also figure prominently in
Siegman’s work on dissipative CQED[28], but these works
are semiclassical treatments in which the fields are consid-
ered asc number, and the limitl!d is considered, wherel
is the wavelength andd is the dimension of the structure.
The present paper goes beyond these limits, working in a
different regime; the main results of this paper consist, at
first, in the introduction of the second quantization scheme
for photonic crystals viewed as open systems, by using the
QNM theory. Then, using the just mentioned formalism, we
study the decay rate of an atom situated inside the crystal
performed by the Feynman propagator expressed in terms of
quasinormal functions. The formalism used in Secs. II and
III, in particular the introduction of the two driving forces
bleftstd andbrightstd, is an useful and well defined method for
any initial state of the fields. Taking a coherent state instead
of a thermal one, enables the study of a(general counter-
propagating) pumped cavity.

The general version of this theory, as presented in the first
three sections, could be applied to a large variety of optical
systems studied in the framework of the double-sides open
systems, i.e., for future developments about photonic crystals
(and more general optical devices) this paper could serve as
a reference on the subject.
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